

# Strengthening Program-level Assessment for Environmental Engineering: Undergraduate and Graduate Focus

Svetoslava Todorova, Environmental Engineering Program Director Civil and Environmental Engineering Department, College of Engineering and Computer Science

#### Introduction

#### Undergraduate Environmental Engineering

program

• Holds an accreditation from the Associated Board of Engineering Education (ABET)

4

N

**(**)

മ

JNDF

'n

- Until 2023, assessment data was collected annually for all Student Learning Outcomes (SLOs)
- Assessment data was collected for both civil and environmental engineering programs without being separated by program

Graduate Environmental Engineering program

- Not accredited by ABET
- Program educational objectives and SLOs were developed decades ago and not updated

### **CEE Department at-a glance**

| 19          | 260           | 60           |  |
|-------------|---------------|--------------|--|
| Full-time   | Undergraduate | Graduate     |  |
| CEE Faculty | CEE Students  | CEE Students |  |
|             |               |              |  |

### **Motivation for the Project**

- Strengthen program-level assessment process, improve its effectiveness and reduce faculty workload at undergraduate and graduate level
- Undertake in-depth assessment of one SLO.

#### Outcomes

- Updated curriculum maps for the undergraduate and graduate Environmental Engineering Programs
- Developed scoring rubrics for four SLOs for the undergraduate program and tested two of them during AY 2024-25
- Developed consistent Performance Indicators for undergraduate and graduate SLOs
- Revised SLOs for the graduate Environmental Engineering Program

## ENGAGING FACULTY AND STUDENTS IN THE PROCESS

- Developed transparent process and facilitated discussions at program and department level
- o Used curriculum mapping to plan assessment strategies and enhance evaluation
- Helped faculty understand the assessment practice at program level and move away from using grades (a lot more work to do!)
- Motivated students to contribute to the assessment without being tied to grades
- Applied flipped curriculum map with senior environmental engineering students

| PERFORMANCE INDICATORS                                                                                                                             | Mastery                                                                                                                          | Satisfactory<br>(minor improvement<br>needed)                                                                              | Developing<br>(substantial<br>improvement needed)                                                                                | Beginning<br>(major improvement<br>needed)                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| PI.6.1: An understanding of<br>how appropriate tools and<br>instruments can be used to<br>achieve experimental goals                               | Accurately and fully<br>describes how<br>appropriate tools can<br>achieve the<br>experimental goals                              | Describes how<br>appropriate tools can<br>achieve the<br>experimental goals,<br>with minor errors or<br>omissions          | Describes how tools<br>can achieve the<br>experimental goals,<br>with substantial errors<br>or omissions                         | Has difficulty<br>describing how<br>appropriate tools can<br>achieve the<br>experimental goals,<br>or does so with<br>major conceptual<br>errors |
| PI.5.2: Ability to develop<br>focused, experimental<br>question objective/hypothesis                                                               | Creates a focused<br>experimental<br>question/objective that<br>effectively addresses<br>the problem                             | identifies a well-<br>defined<br>question/objective but<br>it does not completely<br>address the problem                   | Identifies a poorly<br>defined<br>question/objective<br>that is too general and<br>wide-ranging or too<br>narrow                 | Has difficulty<br>developing a focused<br>experimental<br>question/objective<br>that addresses the<br>problem                                    |
| P1.6.3: Collection of<br>quartitative and/or qualitative<br>evidence following an<br>experimental procedure                                        | Implements a<br>comprehensive<br>process to collect<br>reasonable and<br>replicable results                                      | Implements a process<br>to collect results, with<br>some limitations in<br>accuracy                                        | Implements a<br>preliminary process to<br>collect results, with<br>significant limitations<br>in accuracy                        | Has difficulty<br>collecting<br>appropriate<br>information                                                                                       |
| PI.6.4: Ability to analyze and<br>interpret expectmental data<br>with an understanding of<br>limitations and uncertainties                         | Correctly completes<br>necessary calculations<br>or other data analysis<br>procedures and<br>interprets results<br>appropriately | Completes necessary<br>calculations or other<br>data analysis<br>procedures and<br>interprets results with<br>minor errors | Completes necessary<br>calculations or other<br>data analysis<br>procedures and<br>interprets results with<br>substantial errors | Has difficulty<br>completing<br>necessary<br>calculations or other<br>data analysis<br>procedures, or does<br>not interpret results              |
| P1.6.5: Determination of<br>appropriate conclusions,<br>implications, and<br>recommendations based on<br>data analysis and engineering<br>judgment | Generates well-<br>supported and<br>transparent<br>conclusions,<br>compeling<br>implications, and<br>insightful                  | Generates adequate<br>or incomplete<br>conclusions and<br>identifies minimal<br>implications and<br>recommendations        | Generates surface-<br>level conclusions<br>lacking transparency,<br>and identifies no<br>implications or<br>recommendations      | Has difficulty<br>generating wel-<br>supported and<br>transparent<br>conclusions,<br>implications, or<br>recommendations                         |

## INSIGHTS INTO STUDENT PERFORMANCE THROUGH DEMOGRAPHIC ANALYSIS



Student performance is influenced by gender, ethnicity, nationality, and first-generation college status.

Female students, international students, and those who identify as white, Asian and non-Hispanic tend to achieve higher performance.

Figure 1. Student performance across courses. (A) first-generation college students (PAC= parents attended college; PNAC= parents did not attend college); and (B) by gender

## **RETHINKING GRADUATE ASSESSMENT**

- Developed shared understanding of best practices
- Updated the curriculum map and leveraged it to plan assessment and allocate workload
- Led faculty in revising SLOs to reflect current needs and highlight program strengths

 Engaged faculty in collaborative SLOs and rubric development to distribute the workload and ensure everyone's perspectives and experiences are included

